p-adic quotient sets II: Quadratic forms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p-ADIC NORMS AND QUADRATIC EXTENSIONS, II

We investigate the graph theoretical aspects and combinatorics of the action of a unitary group in n variables over a local non-archimedian eld on the Bruhat-Tits building of an odd orthogonal group in 2n+ 1 variables.

متن کامل

ON p-ADIC NORMS AND QUADRATIC EXTENSIONS, II

We investigate the graph theoretical aspects and combinatorics of the action of a unitary group in n variables over a local non-archimedian eld on the Bruhat-Tits building of an orthogonal group in 2n+ 1 variables.

متن کامل

Local Densities of 2-adic Quadratic Forms

In this paper, we give an explicit from formula for the local density number of representing a two by two 2-integral matrix T by a quadratic 2-integral lattice L over Z2. The non-dyadic case was dealt in a previous paper. The special case when L is a (maximal) lattice in the space of trace zero elements in a quaternion algebra over Q2 yields a clean and interesting formula, which matches up per...

متن کامل

Zeros of p-adic forms

A variant of Brauer’s induction method is developed. It is shown that quartic p-adic forms with at least 9127 variables have non-trivial zeros, for every p. For odd p considerably fewer variables are needed. There are also subsidiary new results concerning quintic forms, and systems of forms.

متن کامل

Nearly Quadratic Mappings over p-Adic Fields

and Applied Analysis 3 As a special case, if n 2 in 1.3 , then we have the functional equation 1.2 . Also, if n 3 in 1.3 , we obtain 2 ∑ i1 2 3 ∑ i2 i1 1 f ⎛ ⎝ 3 ∑ i 1, i / i1,i2 xi − 2 ∑ r 1 xir ⎞ ⎠ 3 ∑ i1 2 f ⎛ ⎝ 3 ∑ i 1, i / i1 xi − xi1 ⎞ ⎠ f ( 3 ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2019

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2019.02.023